arXiv:2410.00349v1 [cs.RO] 1 Oct 2024

Data Augmentation for 3DMM-based Arousal-Valence Prediction for
HRI
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Abstract— Humans use multiple communication channels
to interact with each other. For instance, body gestures or
facial expressions are commonly used to convey an intent.
The use of such non-verbal cues has motivated the develop-
ment of prediction models. One such approach is predicting
arousal and valence (AV) from facial expressions. However,
making these models accurate for human-robot interaction
(HRI) settings is challenging as it requires handling multiple
subjects, challenging conditions, and a wide range of facial
expressions. In this paper, we propose a data augmentation
(DA) technique to improve the performance of AV predictors
using 3D morphable models (3DMM). We then utilize this
approach in an HRI setting with a mediator robot and a group
of three humans. Our augmentation method creates synthetic
sequences for underrepresented values in the AV space of the
SEWA dataset, which is the most comprehensive dataset with
continuous AV labels. Results show that using our DA method
improves the accuracy and robustness of AV prediction in real-
time applications. The accuracy of our models on the SEWA
dataset is 0.793 for arousal and valence.

I. INTRODUCTION

Robots that interact with people can benefit by detecting
non-verbal cues in communication since they often provide
a better look at the internal state of humans [1], [2]. In
particular, the human-robot interaction (HRI) community
has special attention to finding novel techniques to identify
and use non-verbal cues such as facial expressions [3], [4].
One of the main challenges in this area is to predict the
emotional state of humans in real-time. In this paper, we
propose a novel augmentation approach to improve a model
that predicts the arousal and valance (AV) of humans in a
way that overcomes the main shortcomings in our previous
HRI experiments [5].

Our testbed, The Talking Room, consists of a multi-group
conversation where young teen participants share their life
experiences with our robot — Haru. The main goal of this
group activity is to support pro-social skills that connects
high-school students of different backgrounds. Haru is the
mediator of these conversations. We designed this group
activity to foster rich group interactions such as turn-taking,
and attention changes. In our previous work, we found that
predicting the AV of the participants is key to understanding
social acknowledgment and social engagement [5]. Besides,
other works in the HRI community have shown that arousal
and valence are two fundamental cues to the quality of the
interaction [6], [7], [8], [9].
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Fig. 1: Overview of our 3DMM-based data augmentation
method.

The level of arousal represents the intensity of the emotion,
while valence is how pleasant or unpleasant the emotion is
[10]. However, current approaches to predict AV from facial
expressions have room to improve in HRI settings, such
as The Talking Room. In particular, our AV model design
adopts three main requirements: (1) real-time prediction in a
group setting, (2) robustness to different lighting conditions,
(3) invariance to head orientation and position, and (4) high
accuracy in both positive and negative emotions.

To achieve requirements (1) through (3), our model uses
EMOCA [11], which is a 3D morphable model (3DMM)
fitting pipeline. The pipeline is used to extract the facial
expression features. By using 2D videos as input, we can
extract vectors of coefficients that represent the facial expres-
sion temporally. 3DMM techniques are robust to different
lighting conditions, head positions, and maintain temporal
coherency [12]. Additionally, using a fast face detector such
as BlazeFace [13] allows us to achieve real-time perfor-
mance.

For our requirement (4), we propose a novel data augmen-
tation method that creates synthetic 3DMMs for underrep-
resented values in the AV space of the SEWA dataset [14]
(we present an overview of our method in Figure [T). The
main idea is to create new sequences of facial expressions by
blending the coefficients of videos that are in the same area
of the AV space. We can achieve face blending by using the
coefficients of the 3DMM fitting. We use the coefficients of
the 3DMM fitting to create a sequence of facial expressions
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by finding other videos that generate a consistent result. To
the best of our knowledge, our work is the first to use a
3DMM-based model to create “synthetic videos” of facial
expressions.

We explore several methods to generate synthetic se-
quences of facial expressions. As well as heuristics on how
to select the source and target videos for blending. For
labels, we use a weighted average of the arousal and valence
values respectively, between the source and the target. Where
the weight is derived from the blending method used. The
results are smooth expression transitions localized between
the source and target videos.

Finally, we performed a study to evaluate the effect
of our 3DMM-based data augmentation techniques on the
performance of our model in the SEWA dataset [14]. Then,
we evaluated the performance of the baseline and the best-
performing model in The Talking Room. Our results show
that by using our AV predictor model trained with our pro-
posed data augmentation method, we can get better accuracy
and robustness in an HRI group setting. These results are
encouraging since they show that our model can be used in
real-time HRI applications.

II. RELATED WORK

This section is an overview of research on facial expres-
sion recognition and the use of data augmentation techniques
in this field. Besides, we introduce the most common 3D
morphable models (3DMM) approaches.

A. 3D Morphable Models of Faces

A 3D morphable model (3DMM) is a statistical model
that represents the expression and shape of a face [15]. The
parameters of a particular face are a set of coefficients that
modify a generic model of the face to fit a target face. Some
of the first methods for 3DMMs are the Basel Face Model
(BFM) [16] and the Surrey Face Model (SFM) [17]. More
recently, the 3DMMs have improved in terms of fidelity and
accuracy [18], [19], [20].

For the EMOCA model [11], their authors incorporate
the use of an emotion recognition model to improve the
quality of the 3DMM fitting. That is, the EMOCA model
incorporates in its loss function the perceptual emotion of
faces. In this manner, the EMOCA model can fit the 3DMM
to a face in a way that the emotion of the face is preserved.
For this reason, we use this model to extract the features of
the face in our approach.

B. Facial Expression Recognition (FER)

The standard in expression analysis is the use of 2D
features from videos [21], [22], [23], [24]. The main idea
is to extract landmarks from the face and use them as input
for a model. Arguably, the most common landmarks are the
ones introduced in the 300-W dataset [25]. These landmarks
are salient points in the face (e.g., mouth, eyes, or nose). In
contrast, the use of a 3DMM finds the parameters of a 3D
model that best fits a given face. The output of the 3DMM is
a set of coefficients that represent the facial expression, head

position, and shape. By using an 3DMM, we skip the step
of extracting the landmarks directly from the RGB videos.

Most of the previous works have used 3DMMs to extract
expression features and use them to train models that predict
categorical emotions [26], [27], [28]. According to our
exhaustive research, the first work that used a 3DMM to
predict arousal and valence was [12]. They extract the facial
features using the 3DMM fitting called EMOCA [11] and
train a model to predict arousal and valence. Our work is
based on this approach, but we focus on improving the
performance of the model by adapting it to overcome the
limitations in our HRI setting.

C. Data Augmentation Techniques for FER

To get an accurate facial expression recognition model,
we need to train it with a large dataset that contains a wide
variety of facial expressions, and a large number of subjects.
These requirements are necessary since different people can
express the same emotion differently, and cultural differences
can affect the way people express their emotions [14]. One
way to get an accurate model with a smaller dataset is to use
data augmentation (DA) techniques.

In the context of FER, DA methods are classified in
data warping and oversampling augmentations [29]. Data
warping techniques generate new images by applying linear
geometric transformations (e.g., rotation, scaling, flipping).
On the other hand, oversampling techniques create synthetic
data for specific target values (e.g., using a GAN to generate
new images of a specific emotion [30]). For a survey on the
use of DA techniques in FER, we refer the reader to [31].

The use of a 3DMM model in our approach allows
us to skip the use of DA to improve the quality of the
feature detection since EMOCA is already robust enough to
provide good results in different situations. However, we can
still use DA techniques to generate synthetic sequences of
emotional expressions to expand the original training set. In
this paper, we explore several DA techniques that are suitable
for 3DMM-based models. We evaluate the effect of these
techniques on the performance of our model in the SEWA
dataset [14].

D. Al Models in Mixed Groups

Our understanding of the dynamics of communication
between a robot and a group of humans (a mixed group)
is still limited [32]. What we know is that when people
interact with a robot in a group, they express their emotions
differently compared to when they are alone with a robot
[33]. As a consequence, the performance of Al models that
predict emotions from facial expressions can be affected by
the group setting. To try to overcome this issue, we design
our AV predictor model to be robust in an HRI setting.

III. PIPELINE OVERVIEW

We present an overview of our pipeline, the requirements
and problem statement, data handling, and the architecture of
the model used. In Figure [2| we present all the components
pipeline to create our arousal and valence prediction model.



Feature Extraction

3DMM-based Data Augmentation

2D Source 3D Model Valence-arousal (AV) Space Augmentation Space o rFECSeq Ajl | IAV Value A | |
SEWA Representation Arousal FECSeq with Similar : ! I[ 0.25,0. 25]]
2D AV annotated s RTvEEs : | : :
. = |
videos ] -, -, -,
A AVValue — 3 | | ]
() 8 % % % | FECSeaB | | AV ValueB |
| | 1[-0.27, 0. 35]|
B ? ? ? AV Value : : : |
| | | |
FECo Sequences Leoeed L0
3D Source (FECSeq)
Facial Expression Clustering
3D Model Fitting Coefficients (FECo) l r .
Facial CEE L % % %
Blending

Augmentation
Area Selection

Expressions
(50 coefficients)

Sequence Query €—
Framet +1

|

|

|

| Faces Values
|

|

\\— J to t AV, b -

Fig. 2: An overview of our pipeline to generate a model with a DA-enhanced dataset.

A. Requirements in The Talking Room

Based on previous pilot studies in our testbed, we identi-
fied the following requirements for our AV predictor model.
First, the model needs to perform in real-time for online
human-robot communication. Additionally, the model needs
to be robust to different lighting conditions, head orienta-
tions, and head and body positions. Finally, the model needs
to have high accuracy in both positive and negative emo-
tions to correctly represent the participants’ emotional states.
These requirements define the problem we wish to address
and guide the design of our model and the augmentation
technique we propose.

B. Data Handling

For data handling, we perform a sample-independent split
of the dataset. We use 80% of the data for training, 10% for
validation, and 10% for test. For the DA-enhanced model, we
use the same train/validation split as the baseline with the
synthetic sequences added to the training set. We keep the
original label values in the range of [—1, 1] for each frame
in the dataset.

C. Model Architecture

Our model is based on the work by [12] to make the
comparisons easier. The model consists of a bi-directional
Gated Recurrent Unit (GRU) network with two layers of size
128. The input of the model is a sequence of 100 frames (two
seconds). The output is a tuple of two values that represent
the arousal and valence of the sequence.

For training, we use a batch size of 4 and dropout in the
GRU layers (0.5). The learning rate is 0.001, and the model
is trained for ~ 25 epochs. We also use the Adam optimizer
with parameters for its weight decay and 7y of 0.0001
and 20, respectively. Besides, it includes a CosineAnnealing
scheduler with warm restarts [34].

We implemented the loss function presented in [35]. The
loss function is a combination of the Root Mean Squared
Error (RMSE), the Pearson product-moment Correlation
Coefficient, and Lin’s Concordance Correlation Coefficient.

D. Baseline Model

For evaluation, we used a baseline model following prior
work [12]. The baseline model uses the same architecture
and parameters as well as the same data split.

IV. FEATURE EXTRACTION

In this section, we present the dataset and the expression
extraction method. We use the EMOCA model [11] to extract
the expression features for each frame in the SEWA dataset
[14]. Figure [2] shows an overview of this process (left side).

A. Face Detection

The input to EMOCA is a cropped face, which makes the
face detection (FD) algorithm impact our model’s perfor-
mance in two ways. First, the accuracy and speed of the
FD vary considerably. And some even fail to find faces
in specific lighting conditions (e.g., dark scenes). Second,
the bounding boxes of the faces differ depending on the
method used; this affects the quality of EMOCA’s output.
For example, if the bounding box crops out part of the chin,
the predicted expression will differ from the input. After
performing tests with multiple off-the-shelf FD, we choose
to use BlazeFace (BF) [13]. BF strikes a balance between
speed and compatibility.

B. Dataset

For our work, we need a video-based dataset (2D source)
with continuous annotations of arousal and valence. We use
the SEWA dataset [14] since it is the biggest dataset that
meets these requirements. The SEWA dataset is publicly
available and contains 538 labeled videos of 348 subjects
with a diverse cultural background. Besides, it is gender
balanced, with age range between 18 and 65. The videos’
frame rate is 50 frames per second. The dataset contains
annotations of arousal and valence for each frame of the
videos. These values are the consensus of six different expert
annotators. The annotations are continuous values in the
range [—1,1]. We chose to use the SEWA dataset since it
is the biggest dataset for affect estimation on videos.



C. Facial Expression Coefficients

Since our model is designed using 3DMM in mind,
we process the SEWA dataset [14] using EMOCA [11].
Similar to [12], we take as input a 3D image (i.e., single
frame), detect the face and generate a crop. Then, the
output is several vectors of coefficients that represent: the
facial expression, head position and orientation, shape, and
texture. In this paper, we focus exclusively on the facial
expression coefficients (FECo). The FECo is represented by
a 50 dimensional vector, F(¢) € R with values ranging from
—4 to 4. Some outliers exist, mostly in situations where the
face is partially occluded.

V. 3DMM-BASED DATA AUGMENTATION

One of the key requirements for The Talking Room demo
is a model that is accurate in both positive and negative
emotions (i.e., robustness). However, the SEWA dataset is
unbalanced in terms of the distribution of the arousal and
valence values (see Figure [3). To address this issue, we
propose data augmentation (DA) techniques that are suitable
for 3DMM-based models.

In this section, we introduce the 3DMM-based DA tech-
nique that we use for our training dataset. Figure 2] shows
our proposed DA flow, suitable for 3DMM-based models.
The augmentation can be separated into (1) source video
selection, (2) target video selection, and (3) blending. In the
following sections, we present the details of each step.

A. Source Video Selection

The first step in our DA process is to select source videos
for blending. Initially, we identify the areas in the AV space
that are underrepresented. The concept is to create synthetic
videos that strengthen the model’s robustness to different
expressions. To achieve this, we present two AV space
approaches, frame-based and video-based. Each approach
has a different effect on the blended output and the clustering
methodology. We aim to achieve an AV space that is more
balanced and representative of in-the-wild emotions.

1) AV Space Clustering:

a) Frame-based: Frame-based blending refers to blend-
ing done per frame. L.e., for each frame of the source video
we locate the most similar frame (based on AV values)
from the AV-clustering space. We then blend the two frames
to create a new frame which will be the frame of the
augmented sample. This means that the clustering is done
on AV values per frame. As the nature of AV labeling is not
entirely expression-dependent, two frames with similar AV
values could have widely different expressions. Therefore,
this approach generates unrealistic synthetic videos where
the expression transition is not smooth.

b) Video-based: Video-based blending refers to blend-
ing done per video. Le., for the source video, we locate the
most similar video (based on mean AV values) from the AV-
clustering space. We then blend the two videos to create a
new video which will be the augmented sample. This means
that the clustering is done on mean AV values per video.

This approach maintains a smooth expression transition. We
used this approach for our final model.

2) Source Video Selection: To achieve our goal, we locate
clusters of AV values with less representation. We explore
two methods to achieve this, the first uses KMeans clustering
and the second uses discrete K-bin clustering.

a) KMeans Clustering: We employ the KMeans clus-
tering algorithm, using the mean AV values of each video as
input. We then select videos from clusters with the lowest
number of videos, in a greedy manner.

b) Discrete K-bin Clustering: We divide the AV space
into discrete bins based on the mean AV values of each video.
This means that we divide the arousal and valence to /K
bins, resulting in K bins. We then select videos from bins
with the lowest number of videos, in a greedy manner.

B. Target Video Selection

The second step in our DA process is to select target
videos for blending. Target videos are selected per source
video. We explore three selection methods, random, near,
and similar. Our experiments show that the similar selection
method is the most effective for our use case.

1) Random Selection: Random selection refers to select-
ing a random video from the dataset. This method is the most
straightforward, yet does not result in a balancing effect.

2) Near Selection: Near selection refers to selecting a
video that is near the source video. We define near as be-
longing to the same cluster as the source video. This method
results in a balancing effect, yet the synthetic sequences can
be unnatural.

3) Similar Selection: Similar selection refers to selecting
a video that is similar to the source video in 3DMM feature
space. We define similarity as the video where the distance
between the mean and variance from the source and the target
will be minimized. This method results in a balancing effect
with more natural sequences. We used this method for our
final model.

C. Blending

The third and final step in our DA process is to blend the
facial expression coefficients and AV labels.

1) Expression Blending: We start by explaining how to
blend the facial expression coefficients. We explored several
blending techniques for synthetic sequence creation: random
blending, selective weighted blending, and full weighted
blending. Our experiments show that the full weighted blend-
ing technique is the most effective.

a) Random Blending: Random blending is done by
fixing a random subset of the coefficients from the source
video and replacing the remaining coefficients with the
coefficients of the target video.

b) Selective Weighted Blending: Selective weighted
blending is done by fixing a random subset of the coefficients
from the source video and performing a weighted blend of
the remaining coefficients with the coefficients of the target
video. The weight is a random value between 0.25 and 0.75.
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Fig. 3: Comparison of arousal and valence distributions.

c) Full Weighted Blending: Full weighted blending is
done by performing a weighted blend of all the coefficients
of the source video with the coefficients of the target video.
The weight is a random value between 0.25 and 0.75. This
technique is the most effective in our experiments.

We present examples of the best blending technique in
Figure [

2) Arousal and Valence Blending: Finally, arousal and
valence blending refers to computing the labels for the
synthetic frames. We perform this process by computing
the weighted average of the arousal and valence values of
the source and target videos, per frame. This uses the same
weight defined in the expression blending step.

VI. SYNTHETIC DATASET

As a result of our 3DMM-based DA techniques, we
created an augmented dataset that is more balanced in terms
of the distribution of the arousal and valence values. We
generated 600 sequences, using 100 source videos and 6
target videos for each, with an average length of 586 frames.

Fig. 4: Examples of synthetic sequences generated using our
approach.

We present the results of our ablation study in the next
section.

As we can see in Figure 3] our DA techniques have a
positive effect on the distribution of the arousal and valence
values in the SEWA dataset.

VII. SEWA EVALUATION

In this section, we present the accuracy of our AV predictor
model in the SEWA dataset [14]. As evaluation metric, we
use the Lin’s Concordance Correlation Coefficient (CCC)
[36]. We chose this metric to be consistent with the rest of
the literature. We compute the CCC with the next formula:

20,0,PCC
ccc— 2% (x,y) i
Oy +Gy +(Hx—l~‘y)

where PCC(x,y) is the Pearson product-moment Corre-
lation Coefficient of the two variables, o, and o, are the
standard deviations of the two variables, and i, and p, are
the means of the two variables.

TABLE I: Arousal and valence prediction accuracy on the
SEWA dataset.

Model Arousal Valence Mean

CccC CcccC CcccC
Mitenkova et al. [37] 0.392 0.469 0.430
Toisoul et al. [23] 0.610 0.650 0.630
Kossaifi et al. [14] 0.520 0.750 0.635
Sanchez et al. [38] 0.640 0.750 0.695
Tellamekala et at. [12] 0.716 0.775 0.745
Our model 0.799 0.788 0.793

As we can see in Table[[} our model has a higher accuracy
compared to the rest of the state-of-the-art models tested
on the SEWA dataset. In the next section, we present an
evaluation of our model in a realistic HRI setting.



VIII. THE TALKING ROOM EVALUATION

Our study, The Talking Room (see Figure [5), consists of
two groups of three children in two different locations. Each
group has a Haru robot and a screen to communicate with
the other group [5]. Haru has the role of a mediator in the
conversation. The topics of this scenario involve sharing life
experiences related to school (e.g., favorite class, etc.).

A. Quantitative Analysis

To be able to evaluate our AV predictor model in our HRI
setting, we implemented an application that works in real-
time. We use an RGB camera running at 30 fps to capture the
video of the participants. In Figure [5] we show the interface
of our application that shows the arousal and valence of the
participants. We also present the 3D representation of their
facial expression, and 2D representations of the expression,
and position coefficients from EMOCA [11].

We used two computer setups to evaluate the performance.
Both use an Intel i9 processor, with one equipped with an
RTX 3090-T1i and the other RTX 3090. For the former,
our pipeline using the BlazeFace detector, runs at 15fps.
And the latter on the same detector runs as 12fps. We also
performed a detailed analysis measuring the time (ms) each
part of our pipeline takes to execute. Our results indicate
that the BlazeFace takes 27.1ms per frame, the inference
time of EMOCA is 47.6ms, and the inference of our AV
model is 0.7ms. In Table [[Il we present a time analysis of our
pipeline using the RTX 3090 GPU (time is in milliseconds
and averaged over a 7 sec video with one face).

TABLE II: Time analysis of our pipeline.

FD Detect Crop EMOCA AV Model Total
SFD 44.4 5.8 559 0.8 110.9
BlazeFace 27.1 5.5 47.6 0.7 84.4
HOG 31.6 6.3 47.6 0.8 90.3
CNN 532.3 5.1 442 0.8 586.5
DNN 11.1 5.6 45.7 0.8 67.7

B. Quality Evaluation

As a test to verify how the AV values of the group change
while talking with our robot, we measure the mean arousal
and valence per frame in the groups. This strengthens our
evaluation by testing our model in a different setting and a
user’s demographics not present in SEWA (children).

To quantify the performance of our model in the HRI
setting, we verify the changes in AV values of the group
change while talking with our robot, Haru. In particular,
we measure the mean arousal and valence per frame in the
groups. We choose this metric since it is a good indicator
of the quality of the interaction. We present the AV values
per frame in Figure [6] As we can see, both the mean arousal
and valence of the groups present bigger changes when the
children interact with the robot (we highlight these moments
in the figure). Besides, the change in the valence of the
emotions and their intensity is consistent with our previous
studies that were manually evaluated by a behavioral expert
[5]. For instance, close to the end of the interaction children

seem unhappy while Haru explains that the activity is about
to end.

Most of the emotional exchanges between the children and
Haru are positive in both arousal and valence. Furthermore,
our model was able to capture negative changes in the AV
values when the children were talking about subjects that
they did not seem to like. This validates the accuracy of our
model to predict both positive and negative emotions in a
realistic HRI setting.

Another advantage we found while using our model is that
it is robust in an HRI setting to different head positions. In
particular, we found that our model can handle well when
people look to their far left or right. We present examples of
this advantage in Figure

IX. LIMITATIONS AND FUTURE WORK

Study limitations include the small number of participants
(N = 6). We plan to address this limitation with larger
user studies in the future. We also plan to evaluate the
performance of our model in other HRI settings. In particular,
we are interested in exploring the use of our model in settings
that involve a wider range of emotions from the participants.

Another limitation is that our model is not able to predict
the emotions of the participants when they are looking down
or their face is partially occluded. We can mitigate the impact
of these situations by implementing a tracking system that
uses previous AV predictions when the faces of participants
are not fully visible.

Finally, we plan to explore the use of our model to
predict more complex social features that are relevant to The
Talking Room. For instance, we are interested in exploring
the use of our model as a basis to predict the level of social
acknowledgment and social engagement of the participants.
We believe that our model can be used to provide a deeper
insight into the socio-emotional interaction in the HRI. Ad-
ditionally, we are interested in exploring various additional
DA techniques to further improve the AV prediction model.

X. CONCLUSIONS

We presented a novel AV predictor model that is designed
to be robust in an HRI setting. We used a 3DMM fitting
model to extract the facial expression features. We also
proposed a novel DA method that creates synthetic sequences
for underrepresented values in the AV space. By combining
the benefits of using a 3DMM-based model and our DA
method, we created an augmented version of the SEWA
dataset [14] that is more balanced in terms of the distribution
of arousal and valence values. We used our dataset to train
our AV predictor which achieved state-of-the-art results.
Furthermore, we evaluated the performance of our model
in an HRI scenario with three children and a robot. Our
results show that using our AV predictor is robust enough to
provide insight into the socio-emotional interactions. These
results are encouraging since they show that our model can
be used in real-time HRI applications.
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